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Abstract

Background: During the COVID-19 pandemic, several US jurisdictions began to regularly report levels of SARS-CoV-2 in
wastewater as a proxy for SARS-CoV-2 incidence. Despite the promise of this approach for improving COVID-19 situational
awareness, the degree to which wastewater surveillance data agree with other data has varied, and better evidence is needed to
understand the situations in which wastewater surveillance data track closely with traditional surveillance data.

Objective: In this study, we quantified the statistical relationship between wastewater data and traditional case-based
surveillance data for multiple jurisdictions.

Methods: We collated data on wastewater SARS-CoV-2 RNA levels and COVID-19 case reports from July 2020 to March
2023 for 107 counties representing a range in terms of geographic location, population size, and urbanicity. For these counties,
we used Bayesian hierarchical regression modeling to estimate the statistical relationship between wastewater data and
reported cases, allowing for variation in this relationship across counties. We compared different model structural approaches
and assessed how the strength of the estimated relationships varied between settings and over time.

Results: Our analyses revealed a strong positive relationship between wastewater data and COVID-19 cases for the majority
of locations, with a median correlation coefficient between observed and predicted cases of 0.904 (IQR 0.823-0.943). In total,
23/107 counties (21.5%) had correlation coefficients below 0.8, and 3/107 (2.8%) had values below 0.6. Across locations, the
COVID-19 case rate associated with a given level of wastewater SARS-CoV-2 RNA concentration declined over the study
period. Counties with greater population size (P<.001) and higher levels of urbanicity (P<.001) had stronger concordance
between wastewater data and COVID-19 cases. Measures of model fit, and relationships with urbanicity and population size,
were robust to sensitivity analyses in which we varied the time period of analysis and the sample of counties used for model
fitting.

Conclusions: In a sample of 107 US counties, wastewater surveillance had a close relationship with COVID-19 cases reported
for the majority of locations, with these relationships found to be stronger in counties with greater population size and
urbanicity. In situations where routine COVID-19 surveillance data are less reliable, wastewater surveillance may be used to
track local SARS-CoV-2 incidence trends.
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Introduction

Background

The practice of using wastewater data to track pathogens
has gained significant interest as an innovative method of
infectious disease surveillance, with nearly 80% of the US
population connected to public wastewater systems [I,2].
During the COVID-19 crisis, local health agencies started
to gather and report data on COVID-19 concentrations in
wastewater, using the trends in these data as an indirect
indicator of SARS-CoV-2 transmission patterns.

Tracking the presence and concentration of pathogens in
wastewater, a passive method of environmental surveillance,
has been used for several decades to track infectious diseases,
such as polio [3], gastroenteritis [4], hepatitis E [5], and
acute diarrhea [6], among others. However, the COVID-19
pandemic accelerated interest in this approach worldwide [7],
as it offers multiple benefits as a complement to traditional
surveillance systems. First, it can serve as an early warning
system for SARS-CoV-2 transmission, sensitive to asympto-
matic and presymptomatic cases 4-10 days prior to clinical
testing signals [8]. Second, it can monitor community-level
transmission when implemented at downstream locations
such as wastewater treatment plants [9]. The fact that it
does not require individual testing circumvents the challenges
created by variable supply of and demand for COVID-19
diagnostic testing (as has been observed over the pandemic),
and the decline in reporting of test results [10]. Third,
wastewater surveillance programs with specific methods
can track virus variants in the early stage of their evolu-
tion, allowing for early identification of emerging variants
[9,11,12]. Finally, it provides an early indicator of epidemio-
logical changes (as compared to hospitalization and death
data), so that mitigation and other response measures can
be deployed more rapidly. With these advantages, tracking
wastewater COVID-19 data is a potentially powerful tool for
COVID-19 surveillance.

Despite the potential advantages of SARS-CoV-2
wastewater surveillance, significant challenges remain.
Existing studies have generally considered the relationship
between reported cases and wastewater metrics at a limited
number of locations, such as university dorms [13], nursing
homes [14], university campuses [15], and municipalities (eg,
Oklahoma City, Oklahoma [16] and Louisville, Kentucky
[17]). While these studies provide valuable insights, they
often do not fully account for heterogeneities across different
geographical locations. Furthermore, the time periods covered
by existing studies are limited. For example, Xiao, Wu [18]
associated clinical case data with wastewater data within
3 Massachusetts counties from March 2020 through May
2021. Similarly, Weidhaas and Aanderud [19] analyzed 9
weeks of wastewater and COVID-19 case data related to
10 wastewater treatment facilities in Utah. Notably, reported
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cases themselves are not a perfect indicator for true infection
situations, given that they depend on various factors such
as testing availability and access as well as the number
of asymptomatic infections. As such, while quantifying the
relationship between reported cases and wastewater metrics
provides valuable insights, it should be noted as the next-
best alternative. Studies that compare the performance of
COVID-19 wastewater surveillance data across sewersheds
over extended time frames remain scarce [20]. Such research
is valuable for establishing the statistical basis for real-time
trend analysis and describing the conditions under which
wastewater surveillance performs well.

Objectives

This study explored the quantitative relationship between
SARS-CoV-2 wastewater surveillance data and reported
COVID-19 diagnoses across multiple sewer-sheds over the
initial years of the COVID-19 pandemic. Using weekly
aggregated wastewater and case report data for 107 US
counties over 2020-2023, we used Bayesian hierarchical
modeling to establish the statistical relationship between these
2 data sources, describe changes in these relationships over
time and across locations, and identify how the strength of
these relationships varied systematically by county character-
istics. A visual summary of the study design and findings is
provided in Multimedia Appendix 1.

Methods

Data Sources

For the study period July 1, 2020, to March 1, 2023, we
collated county-level SARS-CoV-2 wastewater surveillance
data reported by Biobot Analytics, including 254 counties
covering approximately 30% of the US population. These
data represent RNA copies per milliliter, normalized by the
concentration of pepper mild mottle virus to correct for
variability in fecal content, which is influenced by environ-
mental factors such as stormwater [21]. Surveillance data
on county-level weekly COVID-19 reported case totals were
extracted from the COVID-19 data repository in the Center
for Systems Science and Engineering at Johns Hopkins
University. This repository aggregates data from a large
number of national and subnational US sources, including
the CDC, state and country health departments, and non-
government COVID-19 surveillance projects [22]. Aggrega-
ted and harmonized data represent all COVID-19 cases
diagnosed and reported to these sources for each reporting
period, and therefore will reflect variation in the coverage of
COVID-19 testing and completeness of reporting over time
and between locations. Both the Biobot Analytics data and
the COVID-19 data repository at Johns Hopkins University
consist of aggregated and deidentified data. No individual-
level or personally identifiable information was used in the
analysis.
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Due to varied implementation of wastewater surveillance
operations, wastewater data were not available for all
county-weeks. We restricted the analysis to counties with a
minimum of 50 weeks of available wastewater data during the
study period, which resulted in 107 counties being included,
covering a range of geographic areas within the United States,
and with periods of data incompleteness for the majority of
counties. We assessed the correlation between wastewater
metrics and case totals with different time lags (0 wk, 1 wk,
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2 wk, etc), and found that a O week time lag has the high-
est correlation. Therefore, we adopted this for the analysis.
We grouped counties into 6 ordinal urbanicity categories as
defined by the National Center for Health Statistics (NCHS).
Categories ranged from NCHS category 1 (large central
metro) as the most urban to NCHS category 6 (noncore) as
the most rural. Figure 1 shows the geographic distribution of
the 107 counties included in the analysis, coded by NCHS
urbanicity category.

Figure 1. This shows geographic location and National Center for Health Statistics urbanicity category for the 107 counties included in the analysis.

NCHS: National Center for Health Statistics.

Hierarchical Regression Models

Using the wastewater and COVID-19 case data, we con-
structed hierarchical Bayesian regression models to capture
key features of each data source, allowing for differences
in the estimated relationship between these data over time
and between modeled counties. Accounting for temporal
variations is vital as the dynamics of the pandemic changed
over time due to factors such as the emergence of new
variants, public health interventions, vaccination rollouts, and
population immunity. Also, allowing for spatial variations
accounts for local differences, such as vaccination coverage,
socioeconomic and demographic characteristics, and variation
in COVID-19 testing and reporting practices. As all of them
influence the relationship between wastewater metrics and
reported cases, a model that can account for the complex
and evolving nature of the pandemic is critical. Namely, we
modelled the weekly COVID-19 case reports for each county
using a negative binomial likelihood, allowing for over-dis-
persion in these data:

1)
)

Y ~ NegBin(uy, )

My = exp(ay + Boi + B * Xie) * 1y
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In Equation 1, Y} represents reported COVID-19 cases for
county i and week t. We used an alternative parameteriza-
tion of the negative binomial in which u; parameterizes the
mean of the likelihood and ¢ parameterizes the extra-Pois-
son variation. The mean was specified as a function of «,
a time-varying coefficient given a random-walk prior;
a county-specific intercept; and S, a county-specific slope
term applied to Xj, the demeaned wastewater COVID-19
concentration value for each county and week (Equation 2).
Both Sy and B;; were specified as random effects to pool
information across counties. n; represented the population
of each county, as reported by the US Census Bureau. We
fit this model to the COVID-19 case and wastewater data
using the RStan package in R (Stan Development Team)
[23]. The prior distributions used in this model, including
weakly informative priors for fixed effects and random
effects coefficients, were selected based on their widespread
use in Bayesian modeling. These priors serve to regularize
parameter estimates without excessively constraining the
model [24]. Sensitivity checks confirmed that the priors do
not strongly influence the posterior estimates. Additional
details on the specification of this regression model, including

prior distributions, are provided in the Multimedia Appendix
2.
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Analysis of Fitted Models

We used several approaches to assess model fit. First, we
visually compared the COVID-19 case time series for each
county to the fitted values from the regression model. Second,
we calculated a quantitative measure of model fit: the median
absolute deviation (MAD). We estimated this value for each
county and used them to describe the overall level of model
fit and how this varied across counties. We used the MAD
to investigate whether the strength of estimated relationships
differed systematically as a function of county characteristics
(urbanicity and population size), examining these relation-
ships visually and via univariable and multivariable regres-
sion models. Finally, we calculated the correlation coefficient
between modeled values and raw case totals as a simple
summary measure of model fit.

Coefficient Estimates

We used the fitted values of o (the temporal trend in the
regression model) to understand how the relationship between
wastewater and COVID-19 case totals varied over the study
period (from July 2020 to March 2023). We used the fitted
values of Sy and B;; to understand how the relationship
between wastewater concentration and COVID-19 case totals
varied within each county.

Sensitivity Analyses

We conducted 2 sets of sensitivity analyses to evaluate
the robustness of the model results. First, we divided the
dataset into 3 equal 11-month time periods (early, mid,
and late pandemic). We refit the model for each of these
time periods, and compared the goodness-of-fit metrics
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(MAD) and analyses of county characteristics (urbanicity and
population size) from these 3 models to the results of the
main analysis. Second, we identified counties with high data
completeness (at least 100 wk of data out of a total of 140
wk in the study period) and refit the model using only these
counties, then compared these results to those of the main
analysis.

Results

Fitted Relationship Between COVID-19
Cases and Wastewater Concentration

For the majority of modeled locations, we estimated a
relationship between wastewater concentration and weekly
COVID-19 cases, indicating that wastewater concentration
serves as a useful predictor of case trends. Figure 2 shows the
temporal trend in reported COVID-19 cases and fitted model
estimates for each of the 6 example countries, representing
a range in terms of urbanicity and population size, which
are often correlated but not identical. For each of these
example countries the fitted model values (blue symbols)
follow the empirical case data (black symbols) closely, with
occasional deviations (eg, late 2021 - early 2022 estimates
for Arapahoe County, CO). Figures for other counties are
available in Figure S1 in Multimedia Appendix 2. We also
calculated correlation coefficients comparing observed and
predicted values of COVID-19 case counts. Across counties,
the median of these correlation coefficients was 0.904 (IQR
0.823-0.943). In total, 23/107 counties (21.5% of the sample)
had correlation coefficients below 0.8, and 3 had values
below 0.6.
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Figure 2. Comparison of observed and predicted COVID-19 case counts for a select group of counties within each urban-rural category as defined by
the National Center for Health Statistics (NCHS). Category 1 represents the most urban counties, while Category 6 denotes the most rural ones.
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Systematic Differences in Model Fit

Across Counties

To further evaluate how the model performed in each county,
we calculated the MAD for which smaller values indicate
better model fit. For MAD, the median value was 0.259 (IQR
0.201-0.301). When we compared MAD to country popula-
tion size (Figure 3A), we found that model fit was better for

counties with higher population numbers (P<.001).

Prediction interval

1,2, and 3) having lower MAD (P<.001) and therefore better
model fit. More rural counties had poorer model fits (higher
values of MAD), with the exception of Chittenden VT.

Furthermore, we found that MAD was associated with
urbanicity (Figure 3B), with more urban counties (Categories

https://publichealth.jmir.org/2025/1/e68213

When we fit a multivariable regression model including
both logged population and urbanicity categories as predic-
tors, we found both coefficients to have the same sign as
in the univariate analyses but were no longer significant
(population size: P=.09; urbanicity: P=.13).
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Figure 3. (A) How the quality of model fit (MAD) varies with county population size. (B) How the quality of model fit (MAD) varies with country
urbanicity category. Category 1 represents the most urban counties, while Category 6 denotes the most rural ones.
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Time Trends

Figure 4 shows changes in the estimated relationship between
wastewater concentration and COVID-19 case reports over
the study period, quantified as the level of logged COVID-19
case totals consistent with a given wastewater concentration,
shown in blue. Notably, the fluctuations in this relationship
are closely associated with the significant US waves at
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Urbanicity

Regression line with a 95% confidence interval

the end of 2020 to the beginning of 2021 (Alpha wave),
the summer of 2021 (Delta wave), and the beginning of
2022 (Omicron wave). During these periods, the ratio of
COVID-19 cases to wastewater concentration is relatively
high as compared to the months before and afterwards. After
early 2022, the estimated trend shows a progressive decline.
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Figure 4. Time series of the time-varying coefficient («;) alongside the aggregated case counts across counties from July 2020 to February 2023.
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Differences Across Counties

Figure 5 shows fitted estimates for how changes in waste-
water concentration values are associated with changes in
COVID-19 cases for each county. As expected, the slopes
shown in Figure 5 are positive (indicating that an increase
in wastewater concentration was associated with an increase
in reported cases), and relatively consistent across counties.

i
* &

In all cases, the slope of these lines was estimated to be
less than 1 (median 0.551, IQR 0.447-0.632), indicating that
the fitted relationship between wastewater concentration and
COVID-19 case totals is less than proportional (eg, a 50%
increase in wastewater concentration is associated with a
<50% increase in case totals).

Figure 5. Estimated relationship between wastewater concentration and mean weekly cases per 100 thousand people for each county.
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Results of Sensitivity Analysis

In the first sensitivity analysis, we re-estimated key results
after fitting the study model to each of three equal 11-month
time periods subdividing the overall study period into early,
mid, and late pandemic. Estimated median MAD values from
these sensitivity analyses were 0.19 (IQR 0.15-0.26) for the
early-pandemic period (July 2020-May 2021), 0.29 (IQR
0.22-0.38) for the mid-pandemic period (June 2020-April
2022), and 0.2 (IQR 0.14-0.26) for the late-pandemic period
April 2022-March 2023. Overall, their results are similar to
the MAD estimates from the main analysis (median 0.26,
IQR 0.2-0.3), and show the general quality of model fit
was generally consistent over the study period. Similarly,
estimated trends in MAD as a function of population size
and urbanicity matched those of the main analysis (MAD
lower with larger population size and greater urbanicity), with
results shown in Figures S2-S7 in Multimedia Appendix 2.

In the second sensitivity analysis, we re-estimated results
after fitting the study model to countries with high data
completeness (19 counties included). From this sensitivity
analysis, we found a median MAD value of 0.22 (IQR
0.2-0.26) comparable to the value of 0.26 (IQR 0.2-0.3) from
the main analysis. Estimated trends in MAD as a function
of population size and urbanicity matched those of the main
analysis (Figures S8 and S9 in Multimedia Appendix 2).

Discussion

Principal Findings

Wastewater data have been used extensively during the
SARS-CoV-2 pandemic to monitor disease trends and
provide early evidence of rising community transmission.
However, there is limited information on the statisti-
cal relationship between wastewater metrics and reported
COVID-19 cases, and how this relationship varies over time
and across jurisdictions [20]. This knowledge is valuable
for making decisions about how best to use wastewater
data, and to understand the settings in which these data
provide accurate information about COVID-19 case trends. In
this study, we modeled the relationship between wastewater
metrics and clinical cases at the county level in the United
States from July 2020 to March 2023.

The results of our analysis show that models fit to
wastewater data are better able to predict case counts in urban
counties (based on NCHS categorization) as compared to
more rural counties. This may be due to rural areas having
lower levels of connection to centralized sewage systems,
the source of wastewater surveillance data [10,25]. We also
noted a reduction in model performance among counties
with smaller population sizes. This is consistent with other
studies that have reported wastewater surveillance to have
limited sensitivity as an early warning indicator in smaller
geospatial scales [17,26]. We also estimated differences in
the quality of model fit that were not explained by urbanicity
and population size—these may relate to local differences
in the coverage of wastewater surveillance, the processing
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of wastewater samples, or the quality of COVID-19 case
reporting.

In addition to intercounty differences, the results also
revealed fluctuations in the relationship between waste-
water concentration and COVID-19 case totals over the
course of the pandemic. Several factors could account for
these temporal trends. First, viral shedding patterns among
individuals developing COVID-19 in recent years likely
differ from those developing the disease in the early stage of
the pandemic, as immunity in the population through previous
infections and vaccination increased significantly throughout
the pandemic [27]. Second, the transition between different
dominant variants may have also influenced the dynamics of
discharged RNA copies in human waste. For example, the
viral and antibody dynamics are distinct between omicron
and delta variants [28]. Also, as mutations may affect the
quantification of SARS-CoV-2 concentration in wastewa-
ter, such viral changes may need to be accounted for in
estimating the relationship between wastewater levels and
case notifications [29] . Finally, case reporting systems have
changed over time, influencing the ratio of reported and
unreported cases [30,31]. In particular, the declining trend
over the final year of the time series (ie, a declining number
of reported COVID-19 cases for a given wastewater level)
likely relates to changes in COVID-19 testing and reporting
practices, with a progressively smaller fraction of COVID-19
cases diagnosed and reported to public health authorities.

Future Directions

Designing effective wastewater surveillance systems requires
trade-offs among cost-effectiveness, speed, and local
feasibility [32]. Most current sequencing is implemented with
hundreds to thousands of samples in parallel with expensive
machinery and intensive investment in human resources [32].
This implies that counties with fewer resources may find
it difficult to finance and support the required laboratory
infrastructure and human resources.

While the quality of model fit was generally good,
our analyses revealed substantial variation in the utility of
wastewater surveillance across counties. It is also important
to note that reported case counts, which we used as a
proxy for infection trends, are an imperfect measure of true
incidence [33], as they will reflect variation in COVID-19
diagnosis and reporting practices over time and across
locations. Ideally, a population-based survey, such as the
United Kingdom’s Office for National Statistics® COVID-19
Infection Survey, would provide more accurate informa-
tion for assessing the predictive performance of wastewater
surveillance. However, without such data in the United States,
we rely on case reports as the best available data.

The pepper mild mottle virus normalization method
applied to the Biobot wastewater data corrects for variabil-
ity in fecal content due to environmental factors such as
stormwater. However, it may not fully account for seasonal
changes or weather-related fluctuations that could influence
the observed RNA concentrations. While this method is
widely accepted in the field, future research could explore
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advanced normalization techniques to further refine nation-
wide wastewater surveillance models.

Further investigation, validation, and standardized data
collection frameworks are required to better understand
the relationship between wastewater and epidemiological
data. The incorporation of next-generation sequencing and
automation of wastewater data collection processes could
enhance the effectiveness of wastewater surveillance. [34,35].

Conclusions

The SARS-CoV-2 pandemic made it clear that traditional
event-based surveillance systems have critical deficiencies
for providing prompt and valid information about the
local epidemiological situation. Wastewater surveillance may
provide health agencies with another early detection and
effective surveillance tool, unaffected by several of the
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deficiencies of traditional surveillance data. As of March
2024, more than 1300 locations in the United States and
over 72 countries globally conducted wastewater surveil-
lance [36,37]. When implemented effectively, these data can
provide a comprehensive picture of SARS-CoV-2 transmis-
sion, capturing asymptomatic and nontested infections. Our
study demonstrates that analyzing wastewater metrics across
multiple jurisdictions can establish the relationship between
wastewater and potential cases, and how these differ across
locations and over time. However, the missing data in
wastewater and uncertainty in case data require future efforts
to make the relationship between them more established.
Efforts to collect wastewater data in a more standardized
manner should be enhanced further to fully realize their
potential.
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